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Comparison of Performances of the 
Various Shapes of Asymmetric Fins 

Hyung Suk Kang* 
(Received April 25, t996) 

A comparison between the heat loss of the asymmetric triangular fin and the asymmetric 

trapezoidal fins which have various slopes of the fin's upper lateral side is performed. The 

relation between the slope factor of  the fin and the non-dimensional  fin length for equal amount 

of heat loss is shown. Further, the relation between the Blot number and the non-dimensional 

fin length for equal amount of heat loss is given. For  these analyses, a forced analytic method 

is used. In particular, the same equation is used for both the asymmetric triangular fin and the 

asymmetric trapezoidal fins just by adjusting the value of  the slope factor. It is shown that this 

equation can also be applied to a rectangular fin with very good accuracy. The base temperature, 

thermal conductivity of fin's material and the heat transfer coefficient are assumed constant. 

Key Words: Forced Analytic Method,  Asymmetric Fin,  Heat L o s s  Slope Factor 

Nomenc la ture  

Bi  : Blot number(== h l / k )  
h : Coefficient of heat transfer 

k : Thermal conductivity 

l : Fin thickness at the base 

L'  : Fin length 

L : Non-dimensional  fin l ength(L ' / l )  
Q : Heat loss from the various shapes of  asym- 

metric fins 

Qr : Heat loss from a rectangular fin 

T : Fin temperature 

Tw : Fin base temperature 

T= : Fin's surrounding temperature 

x '  :Coord ina t e  along the fin length (base to 

tip) 

x : Non-dimensional  coordinate along the fin 

length (x ' / l )  
y '  : Coordinate along the fin height 

y : Non-dimensional  coordinate along the fin 

height (y ' / / )  

s : Slope factor 
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(~ : Adjusted fin temperature ( T - T = )  

00 : Adjusted fin base temperature (Tz~,-7~) 

An : Eigenvalues 

1. Introduct ion  

Finned surfaces are used widely in our lives. 

For  instance, they are vital parts of the cylinder 

cases in the aircraft engines, the condenser tubes 

of a home refrigerator, heat exchangers, and many 

other heat transfer equipments. Much attention 

has been continuously directed to the fin prob- 

lems. Performances of the rectangular fin (Bar 

-Cohen, 1979; Unal, 1985; Ju, Chou and Hsiao, 

1989; Klett and Mcculloch, 1972; Look, 1988; 

Kang and Kim, 1994) with many different bound- 

ary conditions have been studied. There are some 

papers dealing with the triangular (Burmeister, 

1979; Ullmann and Kalman, 1989; Kang and 

Look, 1993; Martin, 1982; Kang and Kim, 1994) 

or t rapezoidal  fins (Martin, 1982; Razelos, 1980) 

using one or two-dimensional  analysis. In these 
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papers, the shape of a triangular fin or the shape 

of  trapezoidal  fins is symmetric. Many different 

methods (i. e. finite difference method, finite 

element method, analytic method etc.) have been 

used to analyze the given model of the fin. All  

these papers show that one equation can be 

applied to only one model or two (Martin, 1982). 

Also, many heat transfer texts (Chapman, 1984; 

Mills, 1995; Holman, 1981) show that the differ- 

ent boundary conditions are needed to analyze 

the performance of the different shape of  the fin 

even in one dimensional analysis. For  example, 

the boundary conditions for a rectangular fin are 

different from those for a triangular or trap- 

ezoidal fin. For  this reason, each model must be 

analyzed separately. 

This study shows that one equation for two 

-dimensional  analysis can cover several types of  

fin shapes (i. e. rectangular fin, asymmetric tri- 

angular fin and asymmetric trapezoidal  fins 

which have various slope of the upper lateral 

surface) just by adjusting the slope factor. Using 

this one equation, a comparison between the heat 

transfer of  the asymmetric triangular fin and that 

of the asymmetric trapezoidal fins with different 

slope of the upper lateral surface is shown. Fur- 

ther, for arbitrary range of the non-dimensional  

fin length, the relation between the slope factor 

and the non-dimensional  fin length for equal 

amount of heat loss is given. The variation of the 

temperature distributions along three different 

parts (i. e. bottom serface, center line and upper 

lateral surface) of the asymmetric trapezoidal fin 

is listed. Finally, for three different shapes of the 

fins (i. e. rectangular fin, asymmetric triangular 

fin and asymmetric trapezoidal fin), the relation 

between Blot number and the non-dimensional  

fin length for equal amount of  heat loss is present- 

ed. For  simplicity, the base temperature, the heat 

transfer coefficient and thermal conductivity of  

the fin's material are assumed constant and the 

condit ion is assumed to be steady-state. 

2. T w o - D i m e n s i o n a l  A n a l y s i s  

2.1 Analysis for asymmetric fins 
The general equation for the upper lateral sides 

T=T. 

T=Tr 

y' = 0 / / / / / / / / I / I N  

h T=T~ 

x'=L' 
• 

Fig. 1 Geometry of the asymmetric triangular fin 
and the asymmetric trapezoidal fins 

of the fins shown in Fig. 1 can be written as Eq. 

(1): 

y ' = - s  �9 x ' + l  (I) 

In Eq. (1), the slope factor, s, determines the 

shape of the fin and the condition for 0<s<_ l / L  

is needed. For the value o f 0 < s <  1/L, the shape 

of the fin becomes the asymmetric trapezoidal fin 

and the shape of  the fin becomes the asymmetric 

triangular fin for s = l /L .  For  various shapes of 

fins illustrated in Fig. 1, the governing differential 

equation is given by Eq. (2): 

9 2 0  920 
9x 2 +- Oy~=v  (2) 

Three boundary conditions and one energy bal- 

ance equation for the problem shown in Fig. 1 are 

0=00 at x=0,  0_<y<_l (3) 

�9 3 0 - h ' l ' O = O  at y=0, O<_x<_L (4) k 9y 

k" 30 +h" l" 0=0 at x=L, O<-y<<-l-s" L (5) 
0x 

1 1 
_ r ' k r  gO L 3xJx=odY=h" l " ~ ~  ,~.,_ Ody 

-J0 k[~xJx=,/iY+do Layj>,:odx (6) 

O = T - T ~ ,  Oo=Tw-T=, L = L ; ,  x =  where 

y = s 
i 

and 
l 

Equation (3) represents the constant fin base 

temperature and Eq. (4) indicates that the heat 
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transfer by conduction is equal to that by convec- 
tion at the fin bottom. Equation (5) means the 
heat transfer by conduction is equal to that by 
convection at the fin tip. Finally Eq. (6) repre- 
sents the: condition that the energy into the fin at 
the base must escape the fin by convection from 
the side of the fin surface and by conduction from 
the fin tip and fin bottom. By solving Eq. (2) 
with three boundary conditions and one energy 
balance equation listed as Eqs. (3) through Eq. 
(6), the temperature profile can be obtained by 
usual separation of variables procedure. The 
result is 

0 = ~2 0o. N.  �9 f .  (x) �9 f .  (y) (7) 
n = l  

where 

N . =  4~An �9 sin(A.) + B i .  { 1 - c o s ( A . ) } ]  (8) 
sin (2An) 

where 

f ~ ( x )  = c o s h ( A . x )  1 �9 s i n h ( A n x )  (9) 
B B n  

f ~ ( y )  =cos(A.y)  + B ~ .  sin(A.y) (10) 
A. 

A A .  = 2A. 2 + A. �9 sin (2An) 
+ 2 B i  �9 { 1 -cos (2A. )}  (11) 

B B n  = A. + B i  �9 tanh (A .L)  (12) 
An : ~nh~X~q 

_ CC. �9 (DD,-EE, ,+FF,)  + G G  �9 c0sh(A.L) +HH. 
C G  " (IL + ]J, + KK,) - GG " sin h (,~,L) 

(13) 

C C .  through I I .  shown in Eq. (13) are given by 
Eqs. (14.) through (22). 

B i  (14) 
CC~= A 2. , / ( l + s 2 )  

DD.=A~,  �9 c o s ( A . ) + B i  �9 sin(A.) (15) 
E E . = { A .  �9 c o s h ( A n L )  + s �9 B i  �9 s i n h ( A . L )  }" 

cos{ A . ( 1 - s L ) }  (16) 
F F .  = { s �9 A. �9 sinh (A.L)  - B i  �9 cosh (A .L)  } �9 

sin{ A . ( 1 - s L ) }  

G G . = s i n { A . ( l - s L ) }  B i  

H H .  = - / ~ c o s  (G) - s i n  (A.) 

(17) 

cos{A. ( l  - s L ) }  

( 1 8 )  

(19) 

I I . = s  �9 { A .  �9 sin(A.) - B i  �9 cos(An)}  (20) 

J J . = {  An " sinh(A.L) + s  �9 B i  �9 c o s h ( A . L ) }  �9 

cos{ A. (1 - sL)  } (21) 
K K . = { B i  �9 s i n h ( A . L )  - s  �9 A. �9 c o s h ( A . L )  } �9 

sin{A. (1 - sL)  } (22) 

where B i  = - M  
k 

Finally the value of the heat loss from the asym- 
metric fins shown in Fig. 1 can be obtained by 
Eq. (24): 

0x Jx=o dy (23) 

= - k O o ~ = ~ [ s i n ( G ) +  B i  }] A A .  N .  : A, " { l - c ~  �9 �9 

(24) 

To obtain the value of eigenvalues, a forced 
analytic method (Kang and Look, 1993; Kang 

and Kim, 1994) is used. In this forced analytic 
method, the eigenvalue, A,, is calculated using 
Eqs. (12) and (13); then the rest eigenvalues, A. 
( ,z=2,  3, 4, -.,), are obtained from Eq. (26). 
Algebraic manipulation of Eq. (25) produces Eq. 
(26). The direct application of orthogonality 
principle used in the separation of' variables 
method produces Eq. (25): 

0 ~cos (A~y) cos (A.y)  dy  = 0  (25) 

A.=  (2A~ +An) 

tan(An) (26) 
- 2 (A~ + A.) tan (A~) + t a n  Gin) 

2.2 A n a l y s i s  for a r e c t a n g u l a r  fin 

In order to illustrate that Eqs. (7) and (24) 
also can be used to predict the performance of a 
rectangular fin with good accuracy, analysis for a 
rectangular fin is provided separately. Governing 
differential equation and three boundary condi- 
tions are the same as those for the asymmetric fins 
except that energy balance Eq. (6) is replaced by 
the boundary condition for the fin top. This 
boundary condition for the fin top is written as 
Eq. (27): 

3 ~ O + B i .  0 = 0  at y = l ,  O ~ x ~ L  (27) ~y 

In particular, it must be noted that the value of s 
in Eq. (5) is zero for a rectangular fin analysis. 
Then, the temperature profile for a rectangular fin 
can be calculated by Eq. (28): 
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where 

where 

0 = ~ oo �9 ?v;, �9 g,, ( x )  �9 g,, ( y )  (28)  
~ = 1  

g~, (x) : c o s h ( A , , x )  

2, �9 t a n h ( A , L )  + B i  . s i n h ( A , x )  (29) 
A,, + B i  �9 t an  (A,L)  

gn(y)  =cos (Any )  + L L ,  �9 s in (A,y )  (30) 

/,qi (31) L L , -  A,, 

__ A, �9 sin(An) - B i  �9 cos(A,)  (32) 
- A, �9 cos(An) + B i  �9 s in(A,)  

F ina l ly  the value of  the heat loss from a rectangu- 

lar fin can be obtained by Eq.  ( 3 4 ) :  

Q_= / ' l ~ _ k o q 0  ~ 
J0 [_ cZx ix:0 dy (33) 

k0052[sin(A,) + L L , "  { l - c o s ( A , ) } ] .  
n = l  

,Lz �9 t a n h  (AnL) + B i  
A ~ + B i  �9 tanh(AnL) " Nn (34) 

3. Numer ica l  Results  and Discuss ions  

Figure  2 represents the variat ion of  the non 

-d imens iona l  heat loss from the asymmetric  fins 

as the value of  Biot number  varies from 0.01 to 0. 

1 for the non-d imens iona l  fin length, L =  I in the 

case of  the slope factor, s = l / L ,  I / 2 L ,  I / 4 L  and 

Fig.  2 
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Heat loss versus Biot number for L =  1 

1/10L. The  shape of  the fin becomes a t r iangular  

fin for s = l / L .  For  s - - 1 / 2 L ,  the shape of  the fin 

becomes an asymmetric t rapezoidal  fin, and the 

height of  the fin tip is a ha l f  of  the height o f  the 

fin base. The non -d imens iona l  heat loss increases 

linearly as Biot number  increases for all four 

values of  s. On the whole,  in the case o f  L = 1, the 

heat loss decreases as s increases. It means that the 

heat loss is the least for the asymmetr ic  t r iangular  

fin, and that the heat loss increases as the slope of  

the fin's side o f  the t rapezoidal  fin decreases. 

Results for the same condi t ion  as in Fig. 2 except 

that L -  10 are presented in Fig. 3. In this figure, 

the non-d imens iona l  heat loss increases par- 

abolical ly as Biot number  increases. It can be 

Qr 

Fig.  3 
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noted that the values of the non-dimensional  heat 

loss are almost the same for the given values of s. 

This fact explains that the amount of the heat loss 

can be regarded as independent upon the shape of  

the fin for long fin. 

Figure 4 shows that the variation of  the non 

-dimensional heat loss as a function of  the non 

-dimensional fin length for various values of s in 

the case of Bi---0.01. The heat loss for all the 

values of  s increases as the non-dimensional  fin 

length increases. It is also shown that the amount 

of the heat toss becomes larger as the value of s 

decreases for a given range of the non-dimen- 

sional fin length. Figure 5 depicts the same type 

of information as was presented in Fig. 4 but for 

B i = 0 . l . C o m p a r i n g  this with the case of  B i = 0 .  

01, the trend of the variation are similar to the B i  

=0.01 case, but most notable point in this figure 

is that the heat loss becomes almost the same for 

all values of s as the value of L is over 7. 

Table 1 lists the variation of the non-dimen- 

sional temperature along each part of  the asym- 

metric fin in the case of  L = l  and 10 for s - l ~ 2  

0 . 4 5  i i i r f , ~ l  , 

0 . 3 B  

o 0 , a l  :~ - -  : n  = I / L  

0 . ~ 4  I / 4 L  

= I/:OL 

0 . 1 7  

0 , 1 0  i i [ L i ] l ~ l l  

1 2 3 4 5 6 7 f l 9 1 0  

L 

Fig. 5 Heat loss versus the non-dimensional fin 
length ~ r  Bi=O.I 

L. In the case of  L = I ,  the value of the non 

-dimensional temperature along the bottom sur- 

face is the lowest and that along the center line is 

the highest until x - 0 . 6  but the non-dimensional 

temperature along the upper lateral surface is 

larger than that along the center line at x =0.8 for 

both /3i=0.01 and 0.l.In the case of L = 1 0 ,  the 

value of  the non-dimensional temperature along 

the bottom surface is the lowest and that along the 

center line is the highest except x = 10 for both B i  

=0.01 and 0.1. 

Table 1 The variation of the non-dimensional temperature along each part of the asymmetric fin 

L = l  

x =0.2 

Along the 

bottom 

surface 

0.993541 

Along the 

center 

line 

Bi=0.01 

0.995590 

0/& for s = I /2L 

Along the 

upper 

lateral 

surface 

0.995088 

Along the 

bottom 

surface 

0.941212 

Along the 
Along the 

upper 
center 

lateral 
line 

surface 

Bi=O. I 

0.960847 

0.925045 

0.956141 

0.922448 

x : 6  0.524644 0 . 5 2 5 9 7 7  0 . 5 2 5 7 8 8  0 . 0 6 9 7 0 5  0 . 0 7 1 4 5 0  0.071164 

x : 8  0.462033 0 . 4 6 3 2 0 7  0 . 4 6 3 1 6 9  0 . 0 3 1 1 7 9  0.031960 0.031927 

x : 1 0  0.435960 0 . 4 3 7 0 6 8  0 . 4 3 7 0 6 8  0.018914 0 . 0 1 9 3 8 7  0.019387 

L :  10 Bi:0.01 

x = 2  0.782596 0 . 7 8 4 5 5 8  0 . 7 8 3 3 7 7  0 . 4 0 4 7 8 6  0 . 4 1 4 9 2 3  0.408352 

~ : 4  0.628745 0 . 6 3 0 3 4 3  0 . 6 2 9 8 1 7  0 . 1 6 6 9 4 1  0.171120 0.169590 

0.849139 

Bi=0.1 

x=0.4 0.988967 0 . 9 9 1 5 5 2  0 . 9 9 1 2 9 9  0.901587 

x=0.6 0.985269 0 . 9 8 8 0 5 5  0 . 9 8 8 0 2 9  0.869980 0 . 8 9 4 2 2 0  0.893856 

x =0.8 0.982296 0 . 9 8 5 1 3 3  0 . 9 8 5 2 1 0  0 . 8 4 4 7 8 7  0.868890 0.869447 

x:= 1.0 0.980003 0 . 9 8 2 8 4 8  0 . 9 8 2 8 4 8  0.825444 0.849139 
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Fig. 6 
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Relation between the slope factor and the 
non-dimensional fin length for equal amount 
of heat loss based on the value of s = 1, L = 1 
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Fig. 7 Relation between the slope factor and the 
non-dimensional fin length for equal amount 
of heat loss based on the value of s =0.05, L 
=10  

Figure  6 shows the relation between the slope 

factor and the non-d imens iona l  fin length for 

.equal amount  of  heat loss based on the values o f  

s = l . 0 ,  L = I . 0  for Bz'=0.01,  and B i = 0 . 1 . l n  this 

figure ' L - I . 0  and s = l . 0 '  describes that the 

shape of  the fin is a t r iangular  fin, and the non 

-d imensional  fin length is 1. The  value o f  s 

increases as L increases for both B i = 0 . 0 1  and Bi 
=0.1. I t  is also shown that the curves depict  the 

same trend and the slope of  the curve for t3i=0. 
01 case is slightly larger than the slope o f  the 

curve for B i = 0 . 1  case. Figure 7 is the same case 

as Fig. 6 but the based values for equal  amount  of  

heat loss are s=0 .05 ,  L =  10. All  the values o f  s 

and L in Fig. 7 are for the t rapezoidal  fins. The 

trend of  the curve for B i = 0 . 0 1  in Fig. 7 is some- 

what similar  to that shown in Fig. 6 but the 

difference is such that, for the long fin, s increases 

l inearly as L increases. In the case of  B i = 0 . 1 ,  the 

slope factor decreases l inearly as L increases and 

it explains that the heat loss from a rectangular  

Iin is less than that from the asymmetric trap- 

ezoidal  fin when the non-d imens iona l  fin length 

is long (L  = 1 0 ) .  

Table  2 lists the percent change in the heat loss 

for small values o f  the slope factors (i.e.s<__ 1/100 

L)  relative to that from the rectangular  fin for L 

= 1 and L =  10 in each case of  B i = 0 . 0 1 ,  0.05 and 

Table 2 Percent change in the heat loss ((Q,.-Q)/Q,-) for several values of s relative to that from the 

rectangular fin 

Bi ~ . . ,  

0.01 

0.05 0.2956 0.0294 0.0029 

0.1 0.2651 0.0269 0.0027 

L = 1 0  

0.01 0.0220 0.0031 0.0016 

0.05 0.0022 0.0003 0.0000 

0.1 - 0.0032 - 0.0002 0.0000 

I/IOOL I/IO00L I/IO000L 

L = I  

0.3216 0.0305 0.0034 
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Relation between Blot number and the non 
-dimensional fin length for equal amount of 
heat loss based on the value of/3i=0.1,  L =  
0.3 

0.l .The value of the heat loss from a rectangular 

fin as the reference value is calculated by Eq. 

(34). As shown in Table 2, the value of  percent 

change decreases as s decreases for given values of  

Biot number and the non-dimensional  fin length. 

Table 2 represents that Eq. (24), which is applied 

to the triangular and trapezoidal fins, also can be 

applied to a rectangular fin with less than 0.004 % 

relative error just by substitution of small values 

of s (i.e.s<_ l/10000L) for the given range of Biot 

numbe, r and the non-dimensional  fin length. 

Finally Fig. 8 presents the relation between the 

Biot number and the non-dimensional  fin length 

for equal amount of heat loss based on the value 

of Bi : -0 .1 ,  L = 0 . 3  for each three values of s. In 

Fig. 8, the shape of the fin is the asymmetric 

triangular fin for s = l / L ,  an asymmetric trap- 

ezoidal fin for s = l / 2 L  and an approximated 

rectangular fin with less than 0.004 % relative 

error for s = 1/10000L. The value o f /3 i  decreases 

rapidly as L varies from 0.3 to 2 and decreases 

slowly as L increases from 2 to 10. It can be noted 

that the values of Bi for both s = t / L  and s = 1/ 

2L are almost the same when the value of L is 

larger than 5. On the whole, the trends of  the 

curves for given values of s are similar. 

4. Conclusions 

From this two-dimensional analysis, the fol- 

lowing conclusions can be drawn, and used for an 

appropriate design of fins. 

Firstly, for the values of the non-dimensional  

fin length less than 6 approximately, the heat loss 

decreases as the slope factor increases for the 

range of 0.01 <Bi<_O.l. It means that the heat 

loss is the least when the shape of the fin is 

triangular, and that the heat loss increases as the 

slope of the upper lateral surface of a asymmetric 

trapezoidal fin decreases. Secondly, for B i=0 .1 ,  

the amount of the heat loss can be regarded as 

independent on the shapes of fins when the value 

of  L is larger than 6. Thirdly, it is shown that the 

value of  temperature distribution of a asymmetric 

fin is the lowest along the bottom surface. Fourth- 

ly, the same equation can be used for the analysis 

of  a rectangular fin with less than 0.004 % relative 

error as well as for that of asymmetric triangular 

and trapezoidal fins just by substitution of the 

appropriate  values of the slope factor. Fifthly, the 

trends of curves for the relation between the slope 

factor and the non-dimensional  fin length for the 

equal amount of heat loss for Bi=0.01  are simi- 

lar to that for B i=0 .1  in the case of the short fin 

(i.e. 0 . 7 5 < L <  1) while they show opposite trend, 

in the case of the long fin (i.e. 9 . 7 < L < 1 0 ) .  

Finally,  the trends of curves for the relation 

between the Blot number and the non-dimen- 

sional fin length for the equal amount of heat loss 

are similar for any shapes of  fins (i.e. rectangular, 

asymmetric triangular, and asymmetric trap- 

ezoidal fins)~ 

References  

Bar-Cohen A., 1979, "Fin Thickness for an 

Optimized Natural Convection Array of Rectan- 

gular Fins," ASME Journal of  Heat Transfer, 
Vol. I01, pp. 564--566. 

Burmeister, L. C., 1979, "Triangular  Fin 

Performance by the Heat Balance Integral 

Method," ASME Journal of  Heat Transfer, 
Vol. 101, pp. 562-564.  

Chapman, A. J., 1984, Heat Transfer, Macmil- 

lan Publishing Company, New York; Collier 

Macmillan Publishers, London. 

Holman, J. P., 1981, Heat Transfi,r, McGraw 
-Hi l l ,  Inc. 

Ju, Y. H., Chou, Y. S. and Hsiao, C. C., 1989, 



318 Hyung- Suk Kang 

"A New Approach to the Transient Conduction 
in 2-D Rectangular Fin," Int. J. Heat Mass 
Transfer, Vol. 32, No. 9, pp. 1657--1661. 

Kang, H. S. and Kim, S. J., 1994, "Effect of  
Asymmetric Root Temperature on the Heat Loss 
from a Rectangular Fin under Unequal Surround- 
ing Heat Convection Coefficient," J. o f  KSME.,  
Vol. 18, No. 6, pp. 1567--1571. 

Kang, H. S. and Look, Jr., D. C., 1993, "A 
Forced Analytic Scheme Applied to a Two 
Dimensional Fin: An Unsuccessful Venture," 
AIAA 93--2854. 

Kang, H. S. and Kim, S. J., 1994, "Errors in the 
Triangular Fin Analysis under Assuming the Fin 
Tip is Insulated," J. o f  KSME.,  Vol. 18, No. 7, 
pp. 1783--1788. 

Klett, D. E. and Mcculloch, J. W., 1972, "The 
Effect of Thermal Conductivity and Base-Tem- 
perature Depression on Fin Effectiveness," Jour- 
nal o f  Heat Transfer, Trans. ASME,  Aug., pp. 
333-- 334. 

Look, Jr., D. C., 1988, "2-D Fin Performance: 
Bi (top) >Bi (bottom)," ASME Journal o f  Heat 
Transfer, Vol. 111, pp. 780-782.  

Martin Crawford, "Heat Transfer in Trap- 
ezoidal Straight Fins with a Periodically Varying 
Base Temperature," ASME, 82- WA/HT-41.  

Mills, A. F., 1995, Basic Heat and Mass 
Transfer, IRWIN, Chicago. 

Razelos, P. and lmre, K., 1980, "The Optimum 
Dimensions of Circular Fins with Variable Ther- 
mal Parameters," A SME Journal of  Heat 
Transfer, Vol. 102, Aug., pp. 420--425. 

Ullmann, A. and Kalman, H., 1989, "Efficiency 
and Optimized Dimensions of Annular Fins of 
Different Cross-Section Shapes," Int. J. Heat 

Mass Transfer, Vol. 32, No. 6, pp. 1105--1110. 
UNAL, H. S., 1985, "Determination of  the 

Temperature Distribution in an Extended Surface 
with a Non-Uniform Heat Transfer Coefficient," 

Int. J. Heat Mass Transfer, Vol. 28, No. 12, pp. 
2279-- 2284. 


