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Comparison of Performances of the
Various Shapes of Asymmetric Fins

Hyung Suk Kang*
{Received April 25, 1996)

A comparison between the heat loss of the asymmetric triangular fin and the asymmetric
trapezoidal fins which have various slopes of the fin’s upper lateral side is performed. The
relation between the slope factor of the fin and the non-dimensional fin length for equal amount
of heat loss is shown. Further, the relation between the Biot number and the non-dimensional
fin length for equal amount of heat loss is given. For these analyses, a forced analytic method
is used. In particular, the same equation is used for both the asymmetric triangular fin and the
asymmetric trapezoidal fins just by adjusting the value of the slope factor. It is shown that this
equation can also be applied to a rectangular fin with very good accuracy. The base temperature,
thermal conductivity of fin’s material and the heat transfer coefficient are assumed constant.
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Nomenclature
B:i : Biot number (= h//k) Greek Letters
h : Coefficient of heat transfer
%k . Thermal conductivity # . Adjusted fin temperature (7 — 7T.,)
[ . Fin thickness at the base 6 . Adjusted fin base temperature (7,— 7.)
L’ : Fin length A, : Eigenvalues
I, : Non-dimensional fin length(7.'/])
) : Heat loss from the various shapes of asym-
metric fins 1. Introduction
Q- : Heat loss from a rectangular fin
7 . Fin temperature Finned surfaces are used widely in our lives.
T . Fin base temperature For instance, they are vital parts of the cylinder
T. . Fin's surrounding temperature cases in the aircraft engines, the condenser tubes
x” 1 Coordinate along the fin length (base to of a home refrigerator, heat exchangers, and many
tip) other heat transfer equipments. Much attention
x . Non-dimensional coordinate along the fin has been continuously directed to the fin prob-
length(x’/7) lems. Performances of the rectangular fin (Bar
y’ . Coordinate along the fin height -Cohen, 1979; iinal, 1985; Ju, Chou and Hsiao,
y . Non-dimensional coordinate along the fin 1989: Klett and Mcculloch, 1972; Look, 1988;

height(y’/ /)

. Slope factor
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Kang and Kim, 1994) with many different bound-
ary conditions have been studied. There are some
papers dealing with the triangular (Burmeister,
1979; Ullmann and Kalman, 1989; Kang and
Look, 1993; Martin, 1982; Kang and Kim, 1994)
or trapezoidal fins (Martin, 1982; Razelos, 1980)
using one or two-dimensional analysis. In these



312 Hyung-Suk Kang

papers, the shape of a triangular fin or the shape
of trapezoidal fins is symmetric. Many different
methods (i. e. finite difference method, finite
element method, analytic method etc.) have been
used to analyze the given model of the fin. All
these papers show that one equation can be
applied to only one model or two (Martin, 1982).
Also, many heat transfer texts (Chapman, 1984;
Mills, 1995; Holman, 1981) show that the differ-
ent boundary conditions are needed to analyze
the performance of the different shape of the fin
even in one dimensional analysis. For example,
the boundary conditions for a rectangular fin are
different from those for a triangular or trap-
ezotdal fin. For this reason, each model must be
analyzed separately.

This study shows that one equation for two
-dimensional analysis can cover several types of
fin shapes (i. e. rectangular fin, asymmetric tri-
angular fin and asymmetric trapezoidal fins
which have various slope of the upper lateral
surface) just by adjusting the slope factor. Using
this one equation, a comparison between the heat
transfer of the asymmetric triangular fin and that
of the asymmetric trapezoidal fins with different
slope of the upper lateral surface is shown. Fur-
ther, for arbitrary range of the non-dimensional
fin length, the relation between the slope factor
and the non-dimensional fin length for equal
amount of heat loss is given. The variation of the
temperature distributions along three different
parts (i. e. bottom serface, center line and upper
lateral surface) of the asymmetric trapezoidal fin
is listed. Finally, for three different shapes of the
fins (i. e. rectangular fin, asymmetric triangular
fin and asymmetric trapezoidal fin), the relation
between Biot number and the non-dimensional
fin length for equal amount of heat loss is present-
ed. For simplicity, the base temperature, the heat
transfer coefficient and thermal conductivity of
the fin’s material are assumed constant and the
condition is assumed to be steady-state.

2. Two-Dimensional Analysis

2.1 Analysis for asymmetric fins
The general equation for the upper lateral sides

x'=0

Fig. 1 Geometry of the asymmetric triangular fin
and the asymmetric trapezoidal fins

of the fins shown in Fig. ! can be written as Eq.
():

Y=—gsr+! (1)
In Eq. (1), the slope factor, s, determines the
shape of the fin and the condition for 0<s<//[
is needed. For the value of 0<<s<//L, the shape
of the fin becomes the asymmetric trapezoidal fin
and the shape of the fin becomes the asymmetric
triangular fin for s=//L. For various shapes of
fins illustrated in Fig. 1, the governing differential
equation is given by Eq. (2):

82

o2l @)

Three boundary conditions and one energy bal-
ance equation for the problem shown in Fig. 1 are

9=ty at x=0, 0<y<l 3)
k- %—h [+ 0=0 at y=0, 0<x<L @

- ‘9‘7 L

—f [axlody:h-z-,/—ﬂ-ﬂfl oy
[T e [ [aylo' ®

’

where 0=T—"T., Gb=Tw— Tw L= L/*, x=

at x=1, 0<y<l—s-

Equation (3) represents the constant fin base
temperature and Eq. (4) indicates that the heat
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transfer by conduction is equal to that by convec-
tion at the fin bottom. Equation (5) means the
heat transfer by conduction is equal to that by
convection at the fin tip. Finally Eq. (6) repre-
sents the condition that the energy into the fin at
the base must escape the fin by convection from
the side of the fin surface and by conduction from
the fin tip and fin bottom. By solving Eq. (2)
with three boundary conditions and one energy
balance equation listed as Eqs. (3) through Eq.
(6), the temperature profile can be obtained by
usual separation of variables procedure. The

result is
0=3160 Na* fa(x) = Fu(3) @)
where
_ A[An + sin(An) + Bi « {1—cos (A }]
M A+ B |2 ——S—M‘”fl”")} ®

Ffa(x) =cosh(Ax) — BB + sink(Axx) (9)

fr(3) =cos Gay) +B - siny) - (10)
where
AA=212+An « sin(24,)
+28i - {1—cos(24.)} (1)
At Bi - tanh(A.L)
BBn= An » tank(A.L) + B (12)
— CCn * (DDn-EEn+FFn) +GGn * COS}Z(/L:L) +HH71

CCn » U4 J]n+ KKy) ~ GGr » sinh(A.L)

(13)
CC, through [J, shown in Eq. (13) are given by
Eqgs. (14) through (22).
Bi
— 14
n2 Y (1+SZ) ( )

DDn=2,+ cos(A») + Bi +

C(/rz :_/]
sin(4.) (15)

EE.={An * cosh(A,L)+s * Bi » sinh(A.L)}*
cos{ A-(1—sL)} (16)
FFo={s " s - sink{A.L) — Bi * cosh(A.L)} -
sin{ A« (1—sL)} (17)
GGn:Sj.n{/{n(l_SL)}_% « cos{A, (1—sL)}
(18)
HH,= —lf—lcos(/in) —sin{(4x) (19)
]In—-. { n Sln(/in) —Bl Ccos (An)} (20)

JIn={ A sinh(AL) +s « Bi - cosh{(A.L)} +

cos{ An(1=3sL)} (20
KK, ={Bi * sinh{A.L) —s * An * cosh(A.L)} *
sin{A.(1—sL)} (22)
where Bi= 12/

Finally the value of the heat loss from the asym-
metric fins shown in Fig. | can be obtained by
Eq. (24):

o= [[1-+57| o @

= kﬁo,?::l[sin(/in) 'I"% . { 1 —cos (/171) }] « AAn * Ny
(24)

To obtain the value of eigenvalues, a forced
analytic method (Kang and Look, 1993; Kang
and Kim, 1994) is used. In this forced analytic
method, the eigenvalue, A;, is calculated using
Egs. (12) and (13); then the rest eigenvalues, A,
(n=2, 3, 4, ---), are obtained from Eq. (26).
Algebraic manipulation of Eq. (25) produces Eq.
(26). The direct application of orthogonality
principle used in the separation of variables
method produces Eq. (25):

Alcos {(Aiv)cos (Any) dy =0 (25)
An= 24+ )
—9 (/1‘+/1’1) tan(/ln) (26)

tan (A1) +tan (4»)

2.2 Analysis for a rectangular fin
In order to illustrate that Eqs. (7) and (24)
also can be used to predict the performance of a
rectangular fin with good accuracy, analysis for a
rectangular fin is provided separately. Governing
differential equation and three boundary condi-
tions are the same as those for the asymmetric fins
except that energy balance Eq. (6) is replaced by
the boundary condition for the fin top. This
boundary condition for the fin top is written as
Eq. (27):
00
ay
In particular, it must be noted that the value of s
in Eq. (5) is zero for a rectangular fin analysis.
Then, the temperature profile for a rectangular fin
can be calculated by Eq. (28):

=+ Bi+ =0 at y=1, 0<x<L (27)
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6=31 60+ No - gn(x) - 2n(5) (28)

n=1
where
2n () =cosh{Anx)
En ()’) =C0Ss (/Lzy) + LLn * Sin (Any) (30)

where

_ Bi
LL,=" (31)

__ An * 8in(As) — Bi * cos(4a) (32)
An * cos{An) + B1 * sin(A,)

Finally the value of the heat loss from a rectangu-
lar fin can be obtained by Eq. (34):

Q= u[ﬂ%%}kody (33)

— k2 [sin () + LLa + { 1=cos (4:)}] -

An < tanh(A,L) + Bt
Ant+ Bi  tanh(A.L)

* N (34)

3. Numerical Results and Discussions

Figure 2 represents the variation of the non
~dimensional heat loss from the asymmetric fins
as the value of Biot number varies from 0.01 to 0.
1 for the non-dimensional fin length, /. =1 in the
case of the slope factor, s=1/1, 1/2L, 1/4L and

0.26 7 T T =

0.22

Q/kﬂ'n
o
-

0.10

0.06

0.01 0.04 0.07 0.10
Bi

Fig. 2 Heat loss versus Biot number for [ =1

1/10L. The shape of the fin becomes a triangular
fin for s=1/[. For s=1/2], the shape of the fin
becomes an asymmetric trapezoidal fin, and the
height of the fin tip is a half of the height of the
fin base. The non-dimensional heat loss increases
linearly as Biot number increases for all four
values of s. On the whole, in the case of [.=1, the
heat loss decreases as s increases. It means that the
heat loss is the least for the asymmetric triangular
fin, and that the heat loss increases as the slope of
the fin's side of the trapezoidal fin decreases.
Results for the same condition as in Fig. 2 except
that [, =10 are presented in Fig. 3. In this figure,
the non-dimensional heat loss increases par-
abolically as Biot number increases. It can be

0.44 |

0.40

0.36

0.32

0.28

Q / 8,

0.24

0.20 - -: @8 = 1/4L

8= 1/10L

0.12 b4 1 1 1

0.01 0.04 0.07 0.10
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Fig. 3 Heat loss versus Biot number for 7,=10

0.19 T T T T T T T T 1
‘f’
;= /L _,-t"
o.10 o 4
o= 1/2L &
- ')/
-] 5
%
~ 2
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Fig. 4 Heat loss versus the non-dimensional fin
length for B;=0.01
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noted that the values of the non-dimensional heat
loss are almost the same for the given values of s.
This fact explains that the amount of the heat loss
can be regarded as independent upon the shape of
the fin for long fin.

Figure 4 shows that the variation of the non
-dimensional heat loss as a function of the non
-dimensional fin length for various values of s in
the case of B;=0.01. The heat loss for all the
values of s increases as the non-dimensional fin
length increases. It is also shown that the amount
of the heat loss becomes larger as the value of s
decreases for a given range of the non-dimen-
sional fin length. Figure 5 depicts the same type
of information as was presented in Fig. 4 but for
Bi=0.1.Comparing this with the case of B;=0.
01, the trend of the variation are similar to the B;
=0.01 case, but most notable point in this figure
is that the heat loss becomes almost the same for
all values of s as the value of L is over 7.

Table 1 lists the variation of the non-dimen-
sional temperature along each part of the asym-
metric fin in the case of [,=1 and 10 for s=1/2

Y T T T ——
. —
=° — 0= L/L
- cem- a1/
o s = 1/4L
s = 1/10L
-] ] T 8 1} 10
L
Fig. 5 Heat loss versus the non-dimensional fin

length for B;=0.1

L. In the case of [.=1, the value of the non
~-dimensional temperature along the bottom sur-
face is the lowest and that along the center line is
the highest until x=0.6 but the non-dimensional
temperature along the upper lateral surface is
larger than that along the center line at x =0.8 for
both B;=0.01 and 0.1.In the case of [,=10, the
value of the non-dimensional temperature along
the bottom surface is the lowest and that along the
center line is the highest except x = 10 for both B;
=0.01 and 0.1.

Table 1 The variation of the non-dimensional temperature along each part of the asymmetric fin

4/6, for s=1/2L
Along the Along the
Along the Along the Along the Along the
upper upper
bottom center bottom center
. lateral . lateral
surface line surface line
surface surface
I.=1 Bi=0.01 Bi=0.1
x=0.2 0.993541 0.995590 0.995088 0.941212 0.960847 0.956141
x=04 0.988967 0.991552 0.991299 0.901587 0.925045 0.922448
x=0.6 0.985269 0.988055 0.988029 0.869980 0.894220 0.893856
x=0.8 0.982296 0.985133 0.985210 0.844787 0.868890 0.869447
x=10 0.980003 0.982848 0.982848 0.825444 0.849139 0.849139
L=10 Bi=0.01 Bi=0.1
=2 0.782596 0.784558 0.783377 0.404786 0.414923 0.408352
x=4 0.628745 0.630343 0.629817 0.166941 0.171120 0.169590
x=6 0.524644 0.525977 0.525788 0.069705 0.071450 0.071164
x=8 0.462033 0.463207 0.463169 0.031179 0.031960 0.031927
x=10 0.435960 0.437068 0.437068 0.018914 0.019387 0.019387
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L
Relation between the slope factor and the
non-dimensional fin length for equal amount
of heat loss based on the value of s=1, =

Fig. 6

~ Figure 6 shows the relation between the slope
factor and the non-dimensional fin length for
-.equal amount of heat loss based on the values of
s=1.0, L=1.0 for B;{=0.01, and B;=0.1.In this
figure '/ =1.0 and $=1.0" describes that the
shape of the fin is a triangular fin, and the non
-dimensional fin length is 1. The value of s
increases as [, increases for both B;=0.01 and B;
=0.1.1t is also shown that the curves depict the
same trend and the slope of the curve for B;=0.
01 case is slightly larger than the slope of the
curve for B;=0.1 case. Figure 7 is the same case
as Fig. 6 but the based values for equal amount of
heat loss are ¢=0.05, 7.=10. All the values of s

Table 2
rectangular fin

0.060 FT T T T 3

0.054 | .

0.048 |

0.042

0.038

0.030

0.024

o.018

0.012

0.008 L .
9.70 9.78 P82 9.88 9.94
L

10.00

Fig. 7 Relation between the slope factor and the

non-dimensional fin length for equal amount
of heat loss based on the value of s=0.05, [
=10

and L in Fig. 7 are for the trapezoidal fins. The
trend of the curve for B;=0.01 in Fig. 7 is some-
what similar to that shown in Fig. 6 but the
difference is such that, for the long fin, s increases
linearly as L increases. In the case of B/=0.1, the
slope factor decreases linearly as L increases and
it explains that the heat loss from a rectangular
tin is less than that from the asymmetric trap-
ezoidal fin when the non-dimensional fin length
is long (L=10).

Table 2 lists the percent change in the heat loss
for small values of the slope factors (i.e.s<1/100
L) relative to that from the rectangular fin for [
=1 and L =10 in each case of B;=0.01, 0.05 and

Percent change in the heat loss ((Q,— Q)/,) for several values of s relative to that from the

s 1/100L 1/1000L 1/10000L
B L=1
0.01 0.3216 0.0305 0.0034
0.05 0.2956 0.0294 0.0029
0.1 0.2651 0.0269 0.0027
L=10
0.01 0.0220 0.0031 0.0016
0.05 0.0022 0.0003 0.0000
0.1 —0.0032 —0.0002 0.0000
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Fig. 8 Relation between Biot number and the non
-dimensional fin length for equal amount of
heat loss based on the value of B/ =0.1, .=
03

0.1.The value of the heat loss from a rectangular
fin as the reference value is calculated by Eq.
(34). As shown in Table 2, the value of percent
change decreases as s decreases for given values of
Biot number and the non-dimensional fin length.
Table 2 represents that Eq. (24), which is applied
to the triangular and trapezoidal fins, also can be
applied to a rectangular fin with less than 0.004 %
relative error just by substitution of small values
of s (i.es<1/10000L) for the given range of Biot
number and the non-dimensional fin length.

Finally Fig. 8 presents the relation between the
Biot number and the non-dimensional fin length
for equal amount of heat loss based on the value
of Bi==0.1, .=0.3 for each three values of s. In
Fig. 8, the shape of the fin is the asymmetric
triangular fin for s=1/L, an asymmetric trap-
ezoidal fin for ¢=1/21 and an approximated
rectangular fin with less than 0.004 % relative
error for s=1/10000L. The value of B; decreases
rapidly as [ varies from 0.3 to 2 and decreases
slowly as ] increases from 2 to 10. It can be noted
that the values of B; for both s=1/[, and s=1/
2] are almost the same when the value of L is
larger than 5. On the whole, the trends of the
curves for given values of s are similar.

4. Conclusions
From this two-dimensional analysis, the fol-

lowing conclusions can be drawn, and used for an
appropriate design of fins.

Firstly, for the values of the non-dimensional
fin length less than 6 approximately, the heat loss
decreases as the slope factor increases for the
range of 0.01 < B;<0.l. It means that the heat
loss is the least when the shape of the fin is
triangular, and that the heat loss increases as the
slope of the upper lateral surface of a asymmetric
trapezoidal fin decreases. Secondly, for B/=0.1,
the amount of the heat loss can be regarded as
independent on the shapes of fins when the value
of L is larger than 6. Thirdly, it is shown that the
value of temperature distribution of a asymmetric
fin is the lowest along the bottom surface. Fourth-
ly, the same equation can be used for the analysis
of a rectangular fin with less than 0.004 % relative
error as well as for that of asymmetric triangular
and trapezoidal fins just by substitution of the
appropriate values of the slope factor. Fifthly, the

trends of curves for the relation between the slope
factor and the non-dimensional fin length for the
equal amount of heat loss for B;=0.01 are simi-
lar to that for B;=0.1 in the case of the short fin
(i.e. 0.75< .<1) while they show opposite trend,
in the case of the long fin (ie. 9.751.<10).
Finally, the trends of curves for the relation
between the Biot number and the non-dimen-
sional fin length for the equal amount of heat loss
are similar for any shapes of fins (i.e. rectangular,
asymmetric triangular, and asymmetric trap-
ezoidal fins).
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